Java自学者论坛

 找回密码
 立即注册

手机号码,快捷登录

恭喜Java自学者论坛(https://www.javazxz.com)已经为数万Java学习者服务超过8年了!积累会员资料超过10000G+
成为本站VIP会员,下载本站10000G+会员资源,会员资料板块,购买链接:点击进入购买VIP会员

JAVA高级面试进阶训练营视频教程

Java架构师系统进阶VIP课程

分布式高可用全栈开发微服务教程Go语言视频零基础入门到精通Java架构师3期(课件+源码)
Java开发全终端实战租房项目视频教程SpringBoot2.X入门到高级使用教程大数据培训第六期全套视频教程深度学习(CNN RNN GAN)算法原理Java亿级流量电商系统视频教程
互联网架构师视频教程年薪50万Spark2.0从入门到精通年薪50万!人工智能学习路线教程年薪50万大数据入门到精通学习路线年薪50万机器学习入门到精通教程
仿小米商城类app和小程序视频教程深度学习数据分析基础到实战最新黑马javaEE2.1就业课程从 0到JVM实战高手教程MySQL入门到精通教程
查看: 878|回复: 0

[python,2018-06-29] 37%法则及其拓展解决恋爱问题

[复制链接]
  • TA的每日心情
    奋斗
    2024-11-24 15:47
  • 签到天数: 804 天

    [LV.10]以坛为家III

    2053

    主题

    2111

    帖子

    72万

    积分

    管理员

    Rank: 9Rank: 9Rank: 9

    积分
    726782
    发表于 2021-5-31 17:48:54 | 显示全部楼层 |阅读模式

    37%法则

    苏格拉底的问题:

      在一片麦田里摘出一颗最大最好的麦穗。但只能摘一次,而且不能回头。

    传说这是苏格拉底给他的弟子柏拉图提出的问题,又传说柏拉图进行了2次选择:

    1.柏拉图第一次走进麦田,他发现很多很好的麦穗,他摘下了他看到的第一个比较大的麦穗,然后继续往前走,却沮丧地发现自己越走越失望,前面还有不少更好的,但是他却不能再摘了。

    2.柏拉图第二次走进麦田,他依然发现很多很好的麦穗,但是这一次他吸取教训——前面一定有更好的。他一直向前走,直到发现自己差不多走出了麦田。按照规则,他回不去了,而他刚刚错过了最好的麦穗。

    那怎么做才能拿到最大最好的问题呢?

    分析:

    转化为数学问题:

      已知在一个无序的集合 N 中(集合大小已知),一次只能查看一个数,查看后选择是否取出这个数,在只能取一次的情况下,怎么取到集合 N 中的最大数?

    猜想:

      对于这个集合,要取出最大的数, "最大"肯定是比较出来的,既然是比较,必须要有比较的对象,所以我们把集合 N 拆分为2个子集A和B,集合A用来观察和比较,

    集合B用来抽取 “最大” 的数。

      那么,该怎么拆分集合N呢?

      想到了2种方法:

    1.根据 大数定理 ,多次模拟在集合中取数,比较 取出的数 等于 集合中最大数频率,以频率估算概率。

    2.遍历所有的情况,根据 全概率公式 ,进行数学计算。

    解法1:

    假设集合N大小为100,生成长度为100的随机数组,求出前 k 个数中的最大值 max_base,

    从 k+1 开始,如果这个数大于 max_base,则取出这个数作为结果,

    如果第 k+1 个数到最后都小于max_base,则取出最后一个数作为结果。

    重复抽取 100000 次,以频率估算概率,

    k的值为1-100,代码如下:

     1 # Author:shijt
     2 import random
     3 import time
     4 
     5 #获取数组中前 number 个数中的最大数
     6 def getMaxBase(number,random_list):
     7     return max(random_list[:number])
     8 
     9 def getMaxGuess(number,random_list):
    10     max_guess=getMaxBase(number,random_list)
    11     for i in range(number,100):
    12         if (random_list >= max_guess or i==99):  
    13             max_guess = random_list
    14             break
    15
    16     return max_guess
    17 18 for j in range(1,100):
    19     count = 0
    20     for i in range(100000):
    21         random_list = []
    22         #生成长度为100的随机数组
    23         for i in range(100):
    24             random_list.append(random.randint(1, 10000))
    25         if (getMaxGuess(j, random_list) == getMaxBase(100, random_list)):
    26             count += 1
    27     print(j,count, count / 100000)

    以上代码重复执行了3次,得到结果

    出现了3种不同的结果,分别是当k =37,39,36时,取出最大数的频率较高,都 约等于 0.373

    由此猜测,当选择 37%-38%的数作为参考时,取得最大数的概率较高,约为0.373

     

    解法2:

     假设取 k 个数作为观察集合,则对于某个固定的k,第 i 个数为最大数,由全概率公式:

    当n充分大时,

    其中,x=k/n, p(k)=1,

    所以,-xlnx=1,解得x=1/e,即 k/n=1/e,   e为自然对数的底

    1/e约等于 0.3679,约等于37%

     

    解后分析:

     我们可以看到,解法1和解法2的结果虽然比较接近,但还是有些差别,我认为造成这个差别的原因有2个:

    1.在解法二中,要求集合N足够大,而解法1中的n为 100 ,显然不能满足足够大的条件,但是由于本人计算机能力有限,仅能以此作为粗略计算;

     2.当k为 35-39时,彼此之间的概率相差极小,而大数定理本身也是一种估算方法,误差难以避免。

    总的来说,对于苏格拉底的问题,显然最好的方法就是 先观察前37% 的麦穗,然后再遇到比前面麦穗更大的麦穗时,就摘下,否则,则摘取最后一颗麦穗。

     

    37%法则的拓展

    有人以以上数学模型来解决 恋爱问题 ,我觉得不妥,原因有3:

    1.我们不必总是找到最好的那个作为伴侣,可以接受一个相对较好的

    2.我们不能接受很差的人作为伴侣,(当只剩下一个人时,我们就没得选);

    3.我们最终是为了找到伴侣,找到比找到最好的更为重要

    问题:

      已知在一个无序的集合 N 中(集合大小已知),一次只能查看一个数,查看后选择是否取出这个数,在只能取一次的情况下,怎么取到集合 N 中的较大数

      假设我们不必取到最大的数,而是以最大数的90%作为基准,大于90%则为符合需求的数,那么取得较大数的概率为多少?

    分析:

    我们和上面解法1一样,用大量的模拟实验来计算频率,并用频率估算概率。

    解法:

     1 #Author:shijt
     2 import random
     3 import time
     4 
     5 random_list = []
     6 for i in range(100):
     7     random_list.append(random.randint(1, 10000))
     8 
     9 def getMaxBase(number, random_list):
    10     return max(random_list[:number])*0.9
    11 
    12 def getMaxGuess(number, random_list):
    13     max_guess = getMaxBase(number, random_list)
    14     for i in range(number,100):
    15         if (random_list >= max_guess or i == 99):
    16             max_guess = random_list
    17             break
    18     return max_guess
    19 
    20 for j in range(1,100):
    21     count = 0
    22     for i in range(10000):
    23         random_list = []
    24         for i in range(100):
    25             random_list.append(random.randint(1, 10000))
    26         if (getMaxGuess(j, random_list) >= getMaxBase(100, random_list)):
    27             count += 1
    28     print(j,count, count / 10000)

    结果:

    当选择63-65%的数作为参考时,可以得到 较大数 的概率较高,约等于95.7%,可以说远远高于 37%了,这才比较适合作为 恋爱问题的解法。

    PS:当你愿意降低要求到85%时,你会发现,找到伴侣的概率约为 99%,还怕 找不到对象 吗?

    以上仅能作为参考,毕竟人心比数学复杂的多

     

    哎...今天够累的,签到来了1...
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 立即注册

    本版积分规则

    QQ|手机版|小黑屋|Java自学者论坛 ( 声明:本站文章及资料整理自互联网,用于Java自学者交流学习使用,对资料版权不负任何法律责任,若有侵权请及时联系客服屏蔽删除 )

    GMT+8, 2024-12-23 08:47 , Processed in 0.064095 second(s), 28 queries .

    Powered by Discuz! X3.4

    Copyright © 2001-2021, Tencent Cloud.

    快速回复 返回顶部 返回列表