TA的每日心情 | 奋斗 4 天前 |
---|
签到天数: 802 天 [LV.10]以坛为家III
管理员
- 积分
- 726006
|
资源名称: |
【J1415】2021年最新机器学习视频教程 |
下载地址: |
网盘链接:请先登录后查看此内容 |
失效声明: |
如果资料失效,VIP和荣耀会员或者使用金币兑换的普通会员,可以直接联系资料客服QQ索取:。在线时间为:8:00-23:30。请下载后24小时内删除,若侵权请联系客服删除该资料。 |
如何获取: |
1,本资料VIP会员下载地址直接可见,购买VIP:点击购买会员>>,开通后可下载全站所有资料。
2,非VIP会员使用50000Java金币兑换,金币充值:点击进入充值页面。 |
资源描述及截图:
01_2021_机器学习相关规定.mp4
02_第一节__上____机器学习基本概念简介.mp4
03__下____深度学习基本概念简介.mp4
04_Google_Colab教学.mp4
05_Pytorch_教学_part_1.mp4
06_Pytorch_教学_part_2_英文有字幕.mp4
07_作业说明_HW1_slides.mp4
08__选修_To_Learn_More___深度学习简介.mp4
09__选修_To_Learn_More___反向传播_Backpropagation.mp4
10_第二节_机器学习任务攻略.mp4
11_类神经网络训练不起来怎么办_一__局部最小值__local_minima__与鞍点__saddle_point.mp4
12_类神经网络训练不起来怎么办_二__批次__batch__与动量__momentum.mp4
13_类神经网络训练不起来怎么办_三__自动调整学习率__Learning_Rate.mp4
14_类神经网络训练不起来怎么办_四__损失函数__Loss__也可能有影响.mp4
15_类神经网络训练不起来怎么办__五__批次标准化__Batch_Normalization.mp4
16__选修_To_Learn_More___Optimization_for_Deep_Learning__1_2.mp4
17__选修_To_Learn_More___Optimization_for_Deep_Learning__2_2.mp4
18__选修_To_Learn_More____Classification.mp4
19__选修_To_Learn_More___Logistic_Regression.mp4
20_作业说明_HW2中文低画质版.mp4
21_作业说明_HW2_英文有字幕高清版.mp4
22_第三节_卷积神经网络_CNN.mp4
23_自注意力机制_Self_attention__上.mp4
24_自注意力机制__Self_attention___下_.mp4
25__选修_To_Learn_More___Unsupervised_Learning___Word_Embedding.mp4
26__选修_To_Learn_More___Spatial_Transformer_Layer.mp4
27__选修_To_Learn_More___Recurrent_Neural_Network.mp4
28__选修_To_Learn_More___Graph_Neural_Network_1_2_.mp4
29__选修_To_Learn_More___Graph_Neural_Network_2_2_.mp4
30_作业说明_HW3_中文低画质.mp4
31_作业说明_HW3_英文高画质有字幕.mp4
32_作业说明_HW4_中文低画质版.mp4
33_作业说明_HW4_英文无字幕高清版.mp4
34_第五节_Transformer__上_.mp4
35_Transformer__下_.mp4
36__选修_To_Learn_More___Non_Autoregressive_Sequence_Generation.mp4
37_作业说明_HW5_中文___Judgeboi讲解.mp4
38_作业说明_HW5_slides_tutorial__英文版机翻.mp4
39_作业说明_HW5_code_tutorial__英文版机翻.mp4
40_第六节_生成式对抗网络_GAN___一____基本概念介紹.mp4
41_生成式对抗网络_GAN___二____理论介绍与WGAN.mp4
42_生成式对抗网络_GAN___三____生成器效能评估与条件式生成.mp4
43_生成式对抗网络_GAN___四____Cycle_GAN.mp4
44__选修_To_Learn_More___Unsupervised_Learning___Deep_Generative_Model__Part_I_.mp4
45__选修_To_Learn_More___Unsupervised_Learning___Deep_Generative_Model__Part_II_.mp4
46__选修_To_Learn_More___Flow_based__Generative_Model.mp4
47_作业说明_HW6_中文版低画质.mp4
48_作业说明_HW6_英文版高画质有字幕.mp4
49_第七节_自监督式学习___一____芝麻街与进击的巨人.mp4
50_自监督式学习__二____BERT简介.mp4
51_自监督式学习__三_____BERT的奇闻轶事.mp4
52_自监督式学习__四____GPT的野望.mp4
53_自编码器__Auto_encoder___上____基本概念.mp4
54_自编码器__Auto_encoder___下____领结变声器与更多应用.mp4
55__选修_To_Learn_More___BERT_and_its_family___Introduction_and_Fine_tune.mp4
56__选修_To_Learn_More___ELMo__BERT__GPT__XLNet__MASS__BART__UniLM__ELECTRA__others.mp4
57__选修_To_Learn_More___Multilingual_BERT.mp4
58__选修_To_Learn_More___來自獵人暗黑大陸的模型_GPT_3.mp4
59__选修_To_Learn_More___Unsupervised_Learning___Linear_Methods.mp4
60__选修_To_Learn_More___Unsupervised_Learning___Neighbor_Embedding.mp4
61_作业说明_HW7_中文版低画质.mp4
62_作业说明_HW8_中文版低画质.mp4
63_第八节_来自人类的恶意攻击__Adversarial_Attack___上____基本概念.mp4
64_来自人类的恶意攻击__Adversarial_Attack___下____类神经网络能否躲过人类深不见底的恶意.mp4
65_机器学习的可解释性__Explainable_ML___上____为什么神经网络可以正确分辨宝可梦和数码宝贝.mp4
66_机器学习的可解释性__Explainable_ML____下___机器心中的猫长什么样子.mp4
67__选修_To_Learn_More___More_about_Adversarial_Attack__1_2_.mp4
68__选修_To_Learn_More___More_about_Adversarial_Attack__2_2_.mp4
69_作业说明_HW9_中文版低画质.mp4
70_作业说明_HW10_中文版低画质.mp4
71_第九节_概述领域自适应__Domain_Adaptation_.mp4
72_作业说明_HW11_Domain_Adaptation_作業講解.mp4
73_第十节_概述增強式學習_一____增强式学习和机器学习一样都是三个步骤.mp4
74_概述增强式学习__二____Policy_Gradient_与修课心情.mp4
75_概述增强式学习__三____Actor_Critic.mp4
76_概述增强式学习__四____回馈非常罕見的時候怎么办_机器的望梅止渴.mp4
77_概述增强式学习__五____如何从示范中学习_逆向增強式学习__Inverse_RL_.mp4
78__选修_To_Learn_More___Deep_Reinforcement_Learning.mp4
79__选修_To_Learn_More___Proximal_Policy_Optimization__PPO_.mp4
80__选修_To_Learn_More___Q_learning__Basic_Idea_.mp4
81__选修_To_Learn_More___Q_learning__Advanced_Tips_.mp4
82__选修_To_Learn_More___Q_learning__Continuous_Action_.mp4
83_第十二节_机器終身学习___一____为什么今日的人工智能无法成为天网_灾难性遗忘_Catastrophic_Forgetting_.mp4
84_机器終身学习___二____灾难性遗忘_Catastrophic_Forgetting_.mp4
85_神经网络压缩__一____类神经网络剪枝_Pruning__与大乐透假说_Lottery_Ticket_Hypothesis_.mp4
86_神经网络压缩__二____从各种不同的面向來压缩神经网络.mp4
87__选修_To_Learn_More___Geometry_of_Loss_Surfaces__Conjecture_.mp4
88_第十三节_元学习_Meta_Learning__一____元学习和机器学习一样也是三個步骤.mp4
89_元学习_Meta_Learning__二____万物皆可_Meta.mp4
90__选修_To_Learn_More___Meta_Learning___MAML__1_.mp4
91__选修_To_Learn_More___Meta_Learning___MAML__2_.mp4
92__选修_To_Learn_More___Meta_Learning___MAML__3_.mp4
93__选修_To_Learn_More___Meta_Learning___MAML__4_.mp4
94__选修_To_Learn_More___Meta_Learning___MAML__5_.mp4
95__选修_To_Learn_More___Meta_Learning___MAML__6_.mp4
96__选修_To_Learn_More___Meta_Learning___MAML__7_.mp4
97__选修_To_Learn_More___Meta_Learning___MAML__8_.mp4
98__选修_To_Learn_More___Meta_Learning___MAML__9_.mp4
99__选修_To_Learn_More___Meta_Learning___Metric_based.mp4
100__选修_To_Learn_More___Meta_Learning___Metric_based__2_.mp4
101__选修_To_Learn_More___Meta_Learning___Metric_based__3_.mp4
102__选修_To_Learn_More___Meta_Learning___Train_Test_as_RNN.mp4
Lhy_Machine_Learning-main代码.rar
|
|