常见深度分页方式 from+size
es 默认采用的分页方式是 from+ size 的形式,在深度分页的情况下,这种使用方式效率是非常低的,比如
from = 5000, size=10, es 需要在各个分片上匹配排序并得到5000*10条有效数据,然后在结果集中取最后10条
数据返回,这种方式类似于mongo的 skip + size。
除了效率上的问题,还有一个无法解决的问题是,es 目前支持最大的 skip 值是 max_result_window ,默认
为 10000 。也就是当 from + size > max_result_window 时,es 将返回错误
[root@dnsserver ~]
1
最开始的时候是线上客户的es数据出现问题,当分页到几百页的时候,es 无法返回数据,此时为了恢复正常使用,我们采用了紧急规避方案,就是将 max_result_window 的值调至 50000。
[root@dnsserver ~]# curl -XPUT "127.0.0.1:9200/custm/_settings" -d '{ "index" : { "max_result_window" : 50000 } }'
然后这种方式只能暂时解决问题,当es 的使用越来越多,数据量越来越大,深度分页的场景越来越复杂时,如何解决这种问题呢?
为了满足深度分页的场景,es 提供了 scroll 的方式进行分页读取。原理上是对某次查询生成一个游标 scroll_id , 后续的查询只需要根据这个游标去取数据,直到结果集中返回的 hits 字段为空,就表示遍历结束。scroll_id 的生成可以理解为建立了一个临时的历史快照,在此之后的增删改查等操作不会影响到这个快照的结果。
使用 curl 进行分页读取过程如下:
- 先获取第一个 scroll_id,url 参数包括 /index/_type/ 和 scroll,scroll 字段指定了scroll_id 的有效生存期,以分钟为单位,过期之后会被es 自动清理。如果文档不需要特定排序,可以指定按照文档创建的时间返回会使迭代更高效。
[root@dnsserver ~]
- 后续的文档读取上一次查询返回的scroll_id 来不断的取下一页,如果srcoll_id 的生存期很长,那么每次返回的 scroll_id 都是一样的,直到该 scroll_id 过期,才会返回一个新的 scroll_id。请求指定的 scroll_id 时就不需要 /index/_type 等信息了。每读取一页都会重新设置 scroll_id 的生存时间,所以这个时间只需要满足读取当前页就可以,不需要满足读取所有的数据的时间,1 分钟足以。
[root@dnsserver ~]
- 所有文档获取完毕之后,需要手动清理掉 scroll_id 。虽然es 会有自动清理机制,但是 srcoll_id 的存在会耗费大量的资源来保存一份当前查询结果集映像,并且会占用文件描述符。所以用完之后要及时清理。使用 es 提供的 CLEAR_API 来删除指定的 scroll_id
当 scroll 的文档不需要排序时,es 为了提高检索的效率,在 2.0 版本提供了 scroll + scan 的方式。随后又在 2.1.0 版本去掉了 scan 的使用,直接将该优化合入了 scroll 中。由于moa 线上的 es 版本是2.3 的,所以只简单提一下。使用的 scan 的方式是指定 search_type=scan
# 2.0-beta 版本禁用 scroll 的排序,使遍历更加高效 [root@dnsserver ~]# curl '127.0.0.1:9200/order/info/_search?scroll=1m&search_type=scan' -d '{"query":{"match_all":{}}'
search_after 的方式
上述的 scroll search 的方式,官方的建议并不是用于实时的请求,因为每一个 scroll_id 不仅会占用大量的资源(特别是排序的请求),而且是生成的历史快照,对于数据的变更不会反映到快照上。这种方式往往用于非实时处理大量数据的情况,比如要进行数据迁移或者索引变更之类的。那么在实时情况下如果处理深度分页的问题呢?es 给出了 search_after 的方式,这是在 >= 5.0 版本才提供的功能。
search_after 分页的方式和 scroll 有一些显著的区别,首先它是根据上一页的最后一条数据来确定下一页的位置,同时在分页请求的过程中,如果有索引数据的增删改查,这些变更也会实时的反映到游标上。
为了找到每一页最后一条数据,每个文档必须有一个全局唯一值,这种分页方式其实和目前 moa 内存中使用rbtree 分页的原理一样,官方推荐使用 _uid 作为全局唯一值,其实使用业务层的 id 也可以。
- 第一页的请求和正常的请求一样,
curl -XGET 127.0.0.1:9200/order/info/_search { "size": 10, "query": { "term" : { "did" : 519390 } }, "sort": [ {"date": "asc"}, {"_uid": "desc"} ] }
- 第二页的请求,使用第一页返回结果的最后一个数据的值,加上 search_after 字段来取下一页。注意,使用 search_after 的时候要将 from 置为 0 或 -1
curl -XGET 127.0.0.1:9200/order/info/_search { "size": 10, "query": { "term" : { "did" : 519390 } }, "search_after": [1463538857, "tweet#654323"], "sort": [ {"date": "asc"}, {"_uid": "desc"} ] }
总结:search_after 适用于深度分页+ 排序,因为每一页的数据依赖于上一页最后一条数据,所以无法跳页请求。
且返回的始终是最新的数据,在分页过程中数据的位置可能会有变更。这种分页方式更加符合moa的业务场景。
由于当前服务端的 es 版本还局限于 2.3 ,所以无法使用的更高效的 search_after 的方式,在某些场景中为了能取得所有的数据,只能使用 scroll 的方式代替。以下基于 scroll_search 实现的 c API:
es_cursor * co_es_scroll_search(char* esindex, char* estype, cJSON* query, cJSON* sort, cJSON* fields, int size, char* routing); BOOL es_scroll_cursor_next(es_cursor* cursor); void es_cursor_destroy(es_cursor* cursor);
具体业务的使用场景如下:
附:es 版本变更记录如下
2.0 -> 2.1 -> 2.2 -> 2.3 -> 2.4 -> 5.0 -> 5.1 -> 5.2 -> 5.3 -> 5.4 -> 5.5 -> 5.6 -> 6.0 -> 6.1