Java自学者论坛

 找回密码
 立即注册

手机号码,快捷登录

恭喜Java自学者论坛(https://www.javazxz.com)已经为数万Java学习者服务超过8年了!积累会员资料超过10000G+
成为本站VIP会员,下载本站10000G+会员资源,会员资料板块,购买链接:点击进入购买VIP会员

JAVA高级面试进阶训练营视频教程

Java架构师系统进阶VIP课程

分布式高可用全栈开发微服务教程Go语言视频零基础入门到精通Java架构师3期(课件+源码)
Java开发全终端实战租房项目视频教程SpringBoot2.X入门到高级使用教程大数据培训第六期全套视频教程深度学习(CNN RNN GAN)算法原理Java亿级流量电商系统视频教程
互联网架构师视频教程年薪50万Spark2.0从入门到精通年薪50万!人工智能学习路线教程年薪50万大数据入门到精通学习路线年薪50万机器学习入门到精通教程
仿小米商城类app和小程序视频教程深度学习数据分析基础到实战最新黑马javaEE2.1就业课程从 0到JVM实战高手教程MySQL入门到精通教程
查看: 648|回复: 0

《算法4》1.5 - Union-Find 算法解决动态连通性问题,Python实现

[复制链接]
  • TA的每日心情
    奋斗
    2024-11-24 15:47
  • 签到天数: 804 天

    [LV.10]以坛为家III

    2053

    主题

    2111

    帖子

    72万

    积分

    管理员

    Rank: 9Rank: 9Rank: 9

    积分
    726782
    发表于 2021-8-26 12:33:44 | 显示全部楼层 |阅读模式

    Union-Find 算法(中文称并查集算法)是解决动态连通性(Dynamic Conectivity)问题的一种算法,作者以此为实例,讲述了如何分析和改进算法,本节涉及三个算法实现,分别是Quick Find, Quick Union 和 Weighted Quick Union。

    动态连通性(Dynamic Connectivity)

    动态连通性是计算机图论中的一种数据结构,动态维护图结构中相连接的组信息。
    简单的说就是,图中各个点之间是否相连、连接后组成了多少个组等信息。我们称连接在一起就像形成了一个圈子似的,成为一个组(Component),每个组有其自己的一些特征,比如组内所有成员都有同一个标记等。

    提到圈子,大家比较好理解,我们在社交网络中,彼此熟悉的人之间组成自己的圈子,"熟悉"用计算机中的语言来表示就是“Connected 连通的。圈子是会变化的,今天你又新认识了某人,明天你跟某人友尽了,这种变化是动态的,所以有了动态连通性这种数据结构和问题。

    比较常见的应用有,社交网络中比如LinkedIn, 判断某个用户与其它用户是否熟悉:如果你与用户A熟悉,用户A与用户B熟悉,则认为你与用户B也是连接的,你可以看到用户B的信息。在计算机网络中,也存在类似的情况,判断网络中某两个节点是否相连。

    Dynamic Connectivity 的计算机语言表述

    给定一个整数对(p,q),如果p 和 q尚未连通,则使二者相连通。p 和 q 相连后,我们称 p 和 q 在同一个组内。

    当p 和 q 连通时,以下关系则成立:

    • 自反性:p和p自身是相连的
    • 对称性:如果p和q相连,那么q和p也相连
    • 传递性:如果p和q相连,q和r相连,那么p和r也相连

    在一个网络中,会存在很多类似的整数对(p,q),假设网络容量是 N,我们可以定义一个从 0 到 N-1的整数数组,p,q是其中的值,我们可能需要的操作有:

    • 判断 p 和 q 是否相连
    • 如果未相连,则连接 p 和 q, 如果已相连,则可以不做啥
    • 查找 p 或 q 属于哪个组中 (如圈子)

    这里的一个关键是,如何确定 p 和 q 是在同一个组内。这意味着,每个组需要有一些特定的属性,我们在后面的算法中会有考虑。

    Union-Find 算法描述 Dynamic Connectivity

    Union-Find 算法中,提供了对应的方法来实现我们前面提到的可能的操作:

    • connected(): 判断 p 和 q 是否相连,这里要调用 find(p) 和 find(q),如果二者属于同一个组,则认为是相连的,即isConnected()返回true.

    • union(): 如果未相连,则连接 p 和 q, 如果已相连,则可以不做啥

    • find(): 查找 p 或 q 属于哪个组中 (如圈子),这里返回值是整数,作为组的标识符(component identifier)。

    • count(): 返回组的数量

    算法4中的API:

    class UF:
        def __init__(self,N):
        def union(self,p,q): # initialize N sites with integer names
        def find(self,p): #return component identifier for p
        def connected(self,p,q): #return true if p and q are in the same component
        def count(): #number of components
    

    Union-Find 算法及实现

    根据我们前面的描述,如果确定每个组的标识符似乎比较关键,只要确定了,就可以判断是否相连。

    那用什么来作为标识符,区分各个组呢?

    最简单的一个办法是,所有的节点都赋予一个 ID,如果两个节点相连,则将这两个节点的 ID 设成一样的,这样,这两个节点便属于同一个组了。网络中每个组都有了一个唯一的 ID。只要节点 p 和 q 的 ID 相同,则认为节点 p 和 q 相连。我们用数组来放置节点 ID,find()方法可以快速返回 ID,所以我们的第一个算法就叫做 QuickFind。

    QuickFind 算法

    QuickFind 算法中,find方法比较简单,union(p,q)方法需要考虑的一点是,要将与p相连的所有节点 id 都设为q当前的 id,使p所在的组和q所在的组结合成了一个同一组。(注:也可以把与q相连的所有节点id都设为p的id)

    最开始的时候,所有节点都互不相连。我们假设所有的节点由id=0到N-1的整数表示。

    图片.png

    代码:

    # -*- coding: utf-8 -*-
    
    class QuickFind(object):
        id=[]
        count=0
        
        def __init__(self,n):
            self.count = n
            i=0
            while i<n:
                self.id.append(i)
                i+=1
                
        def connected(self,p,q):
            return self.find(p) == self.find(q)
        
        def find(self,p):    
            return self.id[p]
        
        def union(self,p,q):
            idp = self.find(p)
            if not self.connected(p,q):
                for i in range(len(self.id)):
                    if self.id==idp: # 将p所在组内的所有节点的id都设为q的当前id
                        self.id = self.id[q] 
                self.count -= 1 
                                    
    

    我们的测试端代码如下:

    # -*- coding: utf-8 -*-
    
    import quickfind
    
    qf = quickfind.QuickFind(10)
    
    print "initial id list is %s" % (",").join(str(x) for x in qf.id)
    
    list = [
            (4,3),
            (3,8),
            (6,5),
            (9,4),
            (2,1),
            (8,9),
            (5,0),
            (7,2),
            (6,1),
            (1,0),
            (6,7)
            ]
    
    for k in list:
        p =  k[0]
        q =  k[1]
        qf.union(p,q)
        print "%d and %d is connected? %s" % (p,q,str(qf.connected(p,q)    ))
        
    print "final id list is %s" % (",").join(str(x) for x in qf.id)
    print "count of components is: %d" % qf.count
    

    运行结果:

    initial id list is 0,1,2,3,4,5,6,7,8,9
    4 and 3 is connected? True
    3 and 8 is connected? True
    6 and 5 is connected? True
    9 and 4 is connected? True
    2 and 1 is connected? True
    8 and 9 is connected? True
    5 and 0 is connected? True
    7 and 2 is connected? True
    6 and 1 is connected? True
    1 and 0 is connected? True
    6 and 7 is connected? True
    final id list is 1,1,1,8,8,1,1,1,8,8
    count of components is: 2
    

    下图是算法4中的图示,可供参考:

    图片.png

    QuickFind 算法分析:

    find方法快速返回数组的值,但union方法最坏情况下,几乎需要遍历整个数组,如果数组很大(比如社交网络巨大) 、需要连接的节点对很多的时候,QuickFind算法的复杂度就相当大了。所以我们需要改进一下union方法。

    QuickUnion 算法

    前面的QuickFind算法中,union的时候可能需要遍历整个数组,导致算法性能下降。有没有什么办法可以不用遍历整个数组,又可以保证同一个组内的所有节点都有一个共同属性呢?树结构。树的所有节点都有一个共同的根节点,每个树只有一个根节点,那每个树就可以代表一个组。union(p,q)的时候,只要把p所在的树附加到q所在的树的根节点,这样,p和q就在同一树中了。

    改进后的算法即是QuickUnion算法。我们同样要用到 id 数组,只是这里的 id 放的是节点所在树的根节点。

    find(p): 返回的是 p 所在树的根节点
    union(p,q): 将 p 所在树的根节点的 id 设为 q 所在树的根节点

    图片.png

    代码实现:

    # -*- coding: utf-8 -*-
    
    class QuickUnion(object):
        id=[]
        count=0
        
        def __init__(self,n):
            self.count = n
            i=0
            while i<n:
                self.id.append(i)
                i+=1
    
        def connected(self,p,q):
            if self.find(p) == self.find(q):
                return True
            else:            
                return False
        
        def find(self,p):   
            while (p != self.id[p]):
                p = self.id[p]
            return p
        
        def union(self,p,q):
            idq = self.find(q)
            idp = self.find(p)
            if not self.connected(p,q):
                self.id[idp]=idq
                self.count -=1            
                                   
    

    类似的测试端代码:

    # -*- coding: utf-8 -*-
    
    import quickunion
    
    qf = quickunion.QuickUnion(10)
    
    print "initial id list is %s" % (",").join(str(x) for x in qf.id)
    
    list = [
            (4,3),
            (3,8),
            (6,5),
            (9,4),
            (2,1),
            (8,9),
            (5,0),
            (7,2),
            (6,1),
            (1,0),
            (6,7)
            ]
    
    for k in list:
        p =  k[0]
        q =  k[1]
        qf.union(p,q)
        print "%d and %d is connected? %s" % (p,q,str(qf.connected(p,q)    ))
        
    print "final root list is %s" % (",").join(str(x) for x in qf.id)
    print "count of components is: %d" % qf.count
    

    运行结果:

    initial id list is 0,1,2,3,4,5,6,7,8,9
    4 and 3 is connected? True
    3 and 8 is connected? True
    6 and 5 is connected? True
    9 and 4 is connected? True
    2 and 1 is connected? True
    8 and 9 is connected? True
    5 and 0 is connected? True
    7 and 2 is connected? True
    6 and 1 is connected? True
    1 and 0 is connected? True
    6 and 7 is connected? True
    final root list is 1,1,1,8,3,0,5,1,8,8
    count of components is: 2
    

    算法4中的图示供参考理解:

    图片.png

    QuickUnion 算法分析:

    union方法已经很快速了现在,find方法比QuickFind慢了,其最坏的情况下,如下图,一次find需要访问1+..+N次数组,union方法中需要调用两次find方法,即复杂度变成2(1+...+N)=(N+1)N,接近N的平方了。

    图片.png

    Weighted Quick Union 算法

    前面的QuickUnion算法中,union的时候只是简单的将两个树合并起来,并没有考虑两个树的大小,所以导致最坏情况的发生。改进的方法可以是,在union之前,先判断两个树的大小(节点数量),将小点的树附加到大点的树上,这样,合并后的树的深度不会变得非常大。

    示例如下:

    图片.png

    要判断树的大小,需要引进一个新的数组,size 数组,存放树的大小。初始化的时候 size 各元素都设为 1。

    代码:

    # -*- coding: utf-8 -*-
    
    class WeightedQuickUnion(object):
        id=[]
        count=0
        sz=[]
        
        def __init__(self,n):
            self.count = n
            i=0
            while i<n:
                self.id.append(i)
                self.sz.append(1) # inital size of each tree is 1
                i+=1
    
        def connected(self,p,q):
            if self.find(p) == self.find(q):
                return True
            else:            
                return False
        
        def find(self,p):   
            while (p != self.id[p]):
                p = self.id[p]
            return p
        
        def union(self,p,q):
            idp = self.find(p)
            print "id of %d is: %d" % (p,idp)
            idq = self.find(q)
            print "id of %d is: %d" % (q,idq)
            if not self.connected(p,q):            
                print "Before Connected: tree size of %d's id is: %d" % (p,self.sz[idp])
                print "Before Connected: tree size of %d's id is: %d" % (q,self.sz[idq])
                if (self.sz[idp] < self.sz[idq]):
                    print "tree size of %d's id is smaller than %d's id" %(p,q)
                    print "id of %d's id (%d) is set to %d" % (p,idp,idq)
                    self.id[idp] = idq
                             
                    print "tree size of %d's id is incremented by tree size of %d's id" %(q,p)
                    self.sz[idq] += self.sz[idp]    
                    print "After Connected: tree size of %d's id is: %d" % (p,self.sz[idp])
                    print "After Connected: tree size of %d's id is: %d" % (q,self.sz[idq])         
                else:                  
                    print "tree size of %d's id is larger than or equal with %d's id" %(p,q)
                    print "id of %d's id (%d) is set to %d" % (q,idq,idp)
                    self.id[idq] = idp
                    print "tree size of %d's id is incremented by tree size of %d's id" %(p,q)
                    self.sz[idp] += self.sz[idq]   
                    print "After Connected: tree size of %d's id is: %d" % (p,self.sz[idp])
                    print "After Connected: tree size of %d's id is: %d" % (q,self.sz[idq])         
            
                self.count -=1    
    

    测试端代码:

    # -*- coding: utf-8 -*-
    
    import weightedquickunion
    
    qf = weightedquickunion.WeightedQuickUnion(10)
    
    print "initial id list is %s" % (",").join(str(x) for x in qf.id)
    
    list = [
            (4,3),
            (3,8),
            (6,5),
            (9,4),
            (2,1),
            (8,9),
            (5,0),
            (7,2),
            (6,1),
            (1,0),
            (6,7)
            ]
    
    for k in list:
        p =  k[0]
        q =  k[1]
        print "." * 10 + "unioning %d and %d"  % (p,q)  + "." * 10
        qf.union(p,q)
        print "%d and %d is connected? %s" % (p,q,str(qf.connected(p,q)    ))
        
    print "final id list is %s" % (",").join(str(x) for x in qf.id)
    print "count of components is: %d" % qf.count
    

    代码运行结果:

    initial id list is 0,1,2,3,4,5,6,7,8,9
    ..........unioning 4 and 3..........
    id of 4 is: 4
    id of 3 is: 3
    Before Connected: tree size of 4's id is: 1
    Before Connected: tree size of 3's id is: 1
    tree size of 4's id is larger than or equal with 3's id
    id of 3's id (3) is set to 4
    tree size of 4's id is incremented by tree size of 3's id
    After Connected: tree size of 4's id is: 2
    After Connected: tree size of 3's id is: 1
    4 and 3 is connected? True
    ..........unioning 3 and 8..........
    id of 3 is: 4
    id of 8 is: 8
    Before Connected: tree size of 3's id is: 2
    Before Connected: tree size of 8's id is: 1
    tree size of 3's id is larger than or equal with 8's id
    id of 8's id (8) is set to 4
    tree size of 3's id is incremented by tree size of 8's id
    After Connected: tree size of 3's id is: 3
    After Connected: tree size of 8's id is: 1
    3 and 8 is connected? True
    ..........unioning 6 and 5..........
    id of 6 is: 6
    id of 5 is: 5
    Before Connected: tree size of 6's id is: 1
    Before Connected: tree size of 5's id is: 1
    tree size of 6's id is larger than or equal with 5's id
    id of 5's id (5) is set to 6
    tree size of 6's id is incremented by tree size of 5's id
    After Connected: tree size of 6's id is: 2
    After Connected: tree size of 5's id is: 1
    6 and 5 is connected? True
    ..........unioning 9 and 4..........
    id of 9 is: 9
    id of 4 is: 4
    Before Connected: tree size of 9's id is: 1
    Before Connected: tree size of 4's id is: 3
    tree size of 9's id is smaller than 4's id
    id of 9's id (9) is set to 4
    tree size of 4's id is incremented by tree size of 9's id
    After Connected: tree size of 9's id is: 1
    After Connected: tree size of 4's id is: 4
    9 and 4 is connected? True
    ..........unioning 2 and 1..........
    id of 2 is: 2
    id of 1 is: 1
    Before Connected: tree size of 2's id is: 1
    Before Connected: tree size of 1's id is: 1
    tree size of 2's id is larger than or equal with 1's id
    id of 1's id (1) is set to 2
    tree size of 2's id is incremented by tree size of 1's id
    After Connected: tree size of 2's id is: 2
    After Connected: tree size of 1's id is: 1
    2 and 1 is connected? True
    ..........unioning 8 and 9..........
    id of 8 is: 4
    id of 9 is: 4
    8 and 9 is connected? True
    ..........unioning 5 and 0..........
    id of 5 is: 6
    id of 0 is: 0
    Before Connected: tree size of 5's id is: 2
    Before Connected: tree size of 0's id is: 1
    tree size of 5's id is larger than or equal with 0's id
    id of 0's id (0) is set to 6
    tree size of 5's id is incremented by tree size of 0's id
    After Connected: tree size of 5's id is: 3
    After Connected: tree size of 0's id is: 1
    5 and 0 is connected? True
    ..........unioning 7 and 2..........
    id of 7 is: 7
    id of 2 is: 2
    Before Connected: tree size of 7's id is: 1
    Before Connected: tree size of 2's id is: 2
    tree size of 7's id is smaller than 2's id
    id of 7's id (7) is set to 2
    tree size of 2's id is incremented by tree size of 7's id
    After Connected: tree size of 7's id is: 1
    After Connected: tree size of 2's id is: 3
    7 and 2 is connected? True
    ..........unioning 6 and 1..........
    id of 6 is: 6
    id of 1 is: 2
    Before Connected: tree size of 6's id is: 3
    Before Connected: tree size of 1's id is: 3
    tree size of 6's id is larger than or equal with 1's id
    id of 1's id (2) is set to 6
    tree size of 6's id is incremented by tree size of 1's id
    After Connected: tree size of 6's id is: 6
    After Connected: tree size of 1's id is: 3
    6 and 1 is connected? True
    ..........unioning 1 and 0..........
    id of 1 is: 6
    id of 0 is: 6
    1 and 0 is connected? True
    ..........unioning 6 and 7..........
    id of 6 is: 6
    id of 7 is: 6
    6 and 7 is connected? True
    final id list is 6,2,6,4,4,6,6,2,4,4
    count of components is: 2
    

    算法4中的图示:

    图片.png

    哎...今天够累的,签到来了1...
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 立即注册

    本版积分规则

    QQ|手机版|小黑屋|Java自学者论坛 ( 声明:本站文章及资料整理自互联网,用于Java自学者交流学习使用,对资料版权不负任何法律责任,若有侵权请及时联系客服屏蔽删除 )

    GMT+8, 2025-1-21 15:45 , Processed in 0.064959 second(s), 29 queries .

    Powered by Discuz! X3.4

    Copyright © 2001-2021, Tencent Cloud.

    快速回复 返回顶部 返回列表