import tensorflow as tf import numpy as np import matplotlib.pyplot as plt
#使用numpy生成200个随机点,范围从-0.5到0.5均匀分布,增加一个维度得到200行1列的数据(生成二维数据) x_data = np.linspace(-0.5,0.5,200)[:,np.newaxis] #生成随机噪声,形状和x_data相同 noise = np.random.normal(0,0.02,x_data.shape) y_data = np.square(x_data)+noise
#定义连个placeholder,行不确定,列为1 x = tf.placeholder(tf.float32,[None,1]) y = tf.placeholder(tf.float32,[None,1])
#定义神经网络中间层 #权值随机数,1行(输入层1个神经元),10列(中间层10个神经元) Weights_L1 = tf.Variable(tf.random_normal([1,10])) #10个偏置值 biases_L1 = tf.Variable(tf.zeros([1,10])) Wx_plus_b_L1 = tf.matmul(x,Weights_L1)+biases_L1 L1 = tf.nn.tanh(Wx_plus_b_L1)
#定义神经网络输出层 Weights_L2 = tf.Variable(tf.random_normal([10,1])) #1个偏置值 biases_L2 = tf.Variable(tf.zeros([1,1])) Wx_plus_b_L2 = tf.matmul(L1,Weights_L2)+biases_L2 prediction = tf.nn.tanh(Wx_plus_b_L2)
#二次代价函数 loss = tf.reduce_mean(tf.square(y-prediction)) #梯度下降法 train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
with tf.Session() as sess: #变量初始化 sess.run(tf.global_variables_initializer()) #训练2000次,使用placeholder往x,y 传入x_data,y_data for _ in range(2000): sess.run(train_step,feed_dict={x:x_data,y:y_data}) #获得预测值 prediction_value = sess.run(prediction,feed_dict={x:x_data}) #画图 plt.figure() #散点图 plt.scatter(x_data,y_data) #红色的实线,宽度为5 plt.plot(x_data,prediction_value,'r-',lw=5) plt.show()
|