Java自学者论坛

 找回密码
 立即注册

手机号码,快捷登录

恭喜Java自学者论坛(https://www.javazxz.com)已经为数万Java学习者服务超过8年了!积累会员资料超过10000G+
成为本站VIP会员,下载本站10000G+会员资源,会员资料板块,购买链接:点击进入购买VIP会员

JAVA高级面试进阶训练营视频教程

Java架构师系统进阶VIP课程

分布式高可用全栈开发微服务教程Go语言视频零基础入门到精通Java架构师3期(课件+源码)
Java开发全终端实战租房项目视频教程SpringBoot2.X入门到高级使用教程大数据培训第六期全套视频教程深度学习(CNN RNN GAN)算法原理Java亿级流量电商系统视频教程
互联网架构师视频教程年薪50万Spark2.0从入门到精通年薪50万!人工智能学习路线教程年薪50万大数据入门到精通学习路线年薪50万机器学习入门到精通教程
仿小米商城类app和小程序视频教程深度学习数据分析基础到实战最新黑马javaEE2.1就业课程从 0到JVM实战高手教程MySQL入门到精通教程
查看: 1011|回复: 0

CNN autoencoder 进行异常检测——TODO,使用keras进行测试

[复制链接]
  • TA的每日心情
    奋斗
    2024-11-24 15:47
  • 签到天数: 804 天

    [LV.10]以坛为家III

    2053

    主题

    2111

    帖子

    72万

    积分

    管理员

    Rank: 9Rank: 9Rank: 9

    积分
    726782
    发表于 2021-5-17 17:00:17 | 显示全部楼层 |阅读模式

    https://sefiks.com/2018/03/23/convolutional-autoencoder-clustering-images-with-neural-networks/

    https://blog.keras.io/building-autoencoders-in-keras.html

    https://www.kaggle.com/atom1231/keras-autoencoder-with-simple-cnn-kfold4-lb-1704

     

    https://datascience.stackexchange.com/questions/17737/does-it-make-sense-to-train-a-cnn-as-an-autoencoder

     

    Yes, it makes sense to use CNNs with autoencoders or other unsupervised methods. Indeed, different ways of combining CNNs with unsupervised training have been tried for EEG data, including using (convolutional and/or stacked) autoencoders.

    Examples:

    Deep Feature Learning for EEG Recordings uses convolutional autoencoders with custom constraints to improve generalization across subjects and trials.

    EEG-based prediction of driver's cognitive performance by deep convolutional neural network uses convolutional deep belief networks on single electrodes and combines them with fully connected layers.

    A novel deep learning approach for classification of EEG motor imagery signals uses fully connected stacked autoencoders on the output of a supervisedly trained (fairly shallow) CNN.

    But also purely supervised CNNs have had success on EEG data, see for example:

    EEGNet: A Compact Convolutional Network for EEG-based Brain-Computer Interfaces

    Deep learning with convolutional neural networks for brain mapping and decoding of movement-related information from the human EEG (disclosure: I am the first author of this work, more related work see p. 44)

    Note that the EEGNet paper shows that also with a smaller number of trials, purely supervised training of their CNN can outperform their baselines (see Figure 3). Also in our experience on a dataset with only 288 training trials, purely supervised CNNs work fine, slightly outperforming a traditional filter bank common spatial patterns baseline.

    哎...今天够累的,签到来了1...
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 立即注册

    本版积分规则

    QQ|手机版|小黑屋|Java自学者论坛 ( 声明:本站文章及资料整理自互联网,用于Java自学者交流学习使用,对资料版权不负任何法律责任,若有侵权请及时联系客服屏蔽删除 )

    GMT+8, 2025-1-5 10:32 , Processed in 0.052428 second(s), 28 queries .

    Powered by Discuz! X3.4

    Copyright © 2001-2021, Tencent Cloud.

    快速回复 返回顶部 返回列表