网上搜索到的那个top K问题的解法,我觉得有些地方都没有讲明白。因为我们要找出top K, 那么就应该显式的指明the num of reduce tasks is one.
不然我还真不好理解为什么可以得到top K的结果。这里顺便提及一下,一个map task就是一个进程。有几个map task就有几个中间文件,有几个reduce task就有几个最终输出文件。好了,这就好理解了,我们要找的top K 是指的全局的前K条数据,那么不管中间有几个map, reduce最终只能有一个reduce来汇总数据,输出top K。
下面写出思路和代码:
1. Mappers
使用默认的mapper数据,一个input split(输入分片)由一个mapper来处理。
在每一个map task中,我们找到这个input split的前k个记录。这里我们用TreeMap这个数据结构来保存top K的数据,这样便于更新。下一步,我们来加入新记录到TreeMap中去(这里的TreeMap我感觉就是个大顶堆)。在map中,我们对每一条记录都尝试去更新TreeMap,最后我们得到的就是这个分片中的local top k的k个值。在这里要提醒一下,以往的mapper中,我们都是处理一条数据之后就context.write或者output.collector一次。而在这里不是,这里是把所有这个input split的数据处理完之后再进行写入。所以,我们可以把这个context.write放在cleanup里执行。cleanup就是整个mapper task执行完之后会执行的一个函数。
2.reducers
由于我前面讲了很清楚了,这里只有一个reducer,就是对mapper输出的数据进行再一次汇总,选出其中的top k,即可达到我们的目的。Note that we are using NullWritable here. The reason for this is we want all of the outputs from all of the mappers to be grouped into a single key in the reducer.
1 package seven.ili.patent;
2
3 /**
4 * Created with IntelliJ IDEA.
5 * User: Isaac Li
6 * Date: 12/4/12
7 * Time: 5:48 PM
8 * To change this template use File | Settings | File Templates.
9 */
10
11 import org.apache.hadoop.conf.Configuration;
12 import org.apache.hadoop.conf.Configured;
13 import org.apache.hadoop.fs.Path;
14 import org.apache.hadoop.io.IntWritable;
15 import org.apache.hadoop.io.LongWritable;
16 import org.apache.hadoop.io.NullWritable;
17 import org.apache.hadoop.io.Text;
18 import org.apache.hadoop.mapreduce.Job;
19 import org.apache.hadoop.mapreduce.Mapper;
20 import org.apache.hadoop.mapreduce.Reducer;
21 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
22 import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
23 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
24 import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
25 import org.apache.hadoop.util.Tool;
26 import org.apache.hadoop.util.ToolRunner;
27
28 import java.io.IOException;
29 import java.util.TreeMap;
30
31 //利用MapReduce求最大值海量数据中的K个数
32 public class Top_k_new extends Configured implements Tool {
33
34 public static class MapClass extends Mapper<LongWritable, Text, NullWritable, Text> {
35 public static final int K = 100;
36 private TreeMap<Integer, Text> fatcats = new TreeMap<Integer, Text>();
37 public void map(LongWritable key, Text value, Context context)
38 throws IOException, InterruptedException {
39
40 String[] str = value.toString().split(",", -2);
41 int temp = Integer.parseInt(str[8]);
42 fatcats.put(temp, value);
43 if (fatcats.size() > K)
44 fatcats.remove(fatcats.firstKey())
45 }
46 @Override
47 protected void cleanup(Context context) throws IOException, InterruptedException {
48 for(Text text: fatcats.values()){
49 context.write(NullWritable.get(), text);
50 }
51 }
52 }
53
54 public static class Reduce extends Reducer<NullWritable, Text, NullWritable, Text> {
55 public static final int K = 100;
56 private TreeMap<Integer, Text> fatcats = new TreeMap<Integer, Text>();
57 public void reduce(NullWritable key, Iterable<Text> values, Context context)
58 throws IOException, InterruptedException {
59 for (Text val : values) {
60 String v[] = val.toString().split("\t");
61 Integer weight = Integer.parseInt(v[1]);
62 fatcats.put(weight, val);
63 if (fatcats.size() > K)
64 fatcats.remove(fatcats.firstKey());
65 }
66 for (Text text: fatcats.values())
67 context.write(NullWritable.get(), text);
68 }
69 }
70
71 public int run(String[] args) throws Exception {
72 Configuration conf = getConf();
73 Job job = new Job(conf, "TopKNum");
74 job.setJarByClass(Top_k_new.class);
75 FileInputFormat.setInputPaths(job, new Path(args[0]));
76 FileOutputFormat.setOutputPath(job, new Path(args[1]));
77 job.setMapperClass(MapClass.class);
78 // job.setCombinerClass(Reduce.class);
79 job.setReducerClass(Reduce.class);
80 job.setInputFormatClass(TextInputFormat.class);
81 job.setOutputFormatClass(TextOutputFormat.class);
82 job.setOutputKeyClass(NullWritable.class);
83 job.setOutputValueClass(Text.class);
84 System.exit(job.waitForCompletion(true) ? 0 : 1);
85 return 0;
86 }
87 public static void main(String[] args) throws Exception {
88 int res = ToolRunner.run(new Configuration(), new Top_k_new(), args);
89 System.exit(res);
90 }
91
92 }
参考:http://www.greenplum.com/blog/topics/hadoop/how-hadoop-mapreduce-can-transform-how-you-build-top-ten-lists
|