最近点对问题:给定平面上n个点,找其中的一对点,使得在n个点的所有点对中,该点对的距离最小。需要说明的是理论上最近点对并不止一对,但是无论是寻找全部还是仅寻找其中之一,其原理没有区别,仅需略作改造即可。本文提供的算法仅寻找其中一对。
解决最近点对问题最简单的方法就是穷举法,这样时间复杂度是平方级,可以说是最坏的策略。如果使用分治法,其时间复杂度就是线性对数级,这样大大提高了效率。
首先用分治法解决该问题的基本思路可以参考 http://blog.csdn.net/lishuhuakai/article/details/9133961 ,说的很详细,但大致思路就是先根据x轴把所有点平分,然后分别在每一部分寻找最近点对,最后通过比较选一个最小的。当然其中最核心的地方是跨域求距离,原文写的很清楚,在此就不再赘述了。
以下是代码:
from math import sqrt
def nearest_dot(s):
len = s.__len__()
left = s[0:len/2]
right = s[len/2:]
mid_x = (left[-1][0]+right[0][0])/2.0
if left.__len__() > 2: lmin = nearest_dot(left) #左侧部分最近点对
else: lmin = left
if right.__len__() > 2: rmin = nearest_dot(right) #右侧部分最近点对
else: rmin = right
if lmin.__len__() >1: dis_l = get_distance(lmin)
else: dis_l = float("inf")
if rmin.__len__() >1: dis_2 = get_distance(rmin)
else: dis_2 = float("inf")
d = min(dis_l, dis_2) #最近点对距离
mid_min=[]
for i in left:
if mid_x-i[0]<=d : #如果左侧部分与中间线的距离<=d
for j in right:
if abs(i[0]-j[0])<=d and abs(i[1]-j[1])<=d: #如果右侧部分点在i点的(d,2d)之间
if get_distance((i,j))<=d: mid_min.append([i,j]) #ij两点的间距若小于d则加入队列
if mid_min:
dic=[]
for i in mid_min:
dic.append({get_distance(i):i})
dic.sort(key=lambda x: x.keys())
return (dic[0].values())[0]
elif dis_l>dis_2:
return rmin
else:
return lmin
# 求点对的距离
def get_distance(min):
return sqrt((min[0][0]-min[1][0])**2 + (min[0][1]-min[1][1])**2)
def divide_conquer(s):
s.sort(cmp = lambda x,y : cmp(x[0], y[0]))
nearest_dots = nearest_dot(s)
print nearest_dots
测试一下,比如说要找这些点中最近的一对s=[(0,1),(3,2),(4,3),(5,1),(1,2),(2,1),(6,2),(7,2),(8,3),(4,5),(9,0),(6,4)]
运行一下divide_conquer(s),最终打印出[(6, 2), (7, 2)],Bingo
|