Java自学者论坛

 找回密码
 立即注册

手机号码,快捷登录

恭喜Java自学者论坛(https://www.javazxz.com)已经为数万Java学习者服务超过8年了!积累会员资料超过10000G+
成为本站VIP会员,下载本站10000G+会员资源,会员资料板块,购买链接:点击进入购买VIP会员

JAVA高级面试进阶训练营视频教程

Java架构师系统进阶VIP课程

分布式高可用全栈开发微服务教程Go语言视频零基础入门到精通Java架构师3期(课件+源码)
Java开发全终端实战租房项目视频教程SpringBoot2.X入门到高级使用教程大数据培训第六期全套视频教程深度学习(CNN RNN GAN)算法原理Java亿级流量电商系统视频教程
互联网架构师视频教程年薪50万Spark2.0从入门到精通年薪50万!人工智能学习路线教程年薪50万大数据入门到精通学习路线年薪50万机器学习入门到精通教程
仿小米商城类app和小程序视频教程深度学习数据分析基础到实战最新黑马javaEE2.1就业课程从 0到JVM实战高手教程MySQL入门到精通教程
查看: 866|回复: 0

用贝叶斯定理解决三门问题并用Python进行模拟(Bayes' Rule Monty Hall Problem Simulation Python)

[复制链接]
  • TA的每日心情
    奋斗
    2024-11-24 15:47
  • 签到天数: 804 天

    [LV.10]以坛为家III

    2053

    主题

    2111

    帖子

    72万

    积分

    管理员

    Rank: 9Rank: 9Rank: 9

    积分
    726782
    发表于 2021-7-20 14:24:17 | 显示全部楼层 |阅读模式

    三门问题(Monty Hall problem)也称为蒙提霍尔问题或蒙提霍尔悖论,出自美国的电视游戏节目《Let’s Make a Deal》。问题名字来自该节目的主持人蒙提·霍尔(Monty Hall)。

     

    这个游戏的玩法是:参赛者会看见三扇关闭的门,其中一扇门后面有一辆汽车,选中后面有车的那扇门就可以赢得该汽车,而另外两扇门后面则各藏有一只山羊。当参赛者选定了一扇门,但未去开启它的时候,节目主持人会开启剩下两扇门中的一扇,露出其中一只山羊。主持人其后会问参赛者要不要更换其初始的选择,选另一扇仍然关上的门。

     

    那么问题来了,参赛者到底要不要更换其初始的选择呢?

     

    解决这个问题需要用到贝叶斯定理:

     

    让我们选一个特定的例子来看看:假设三扇门分别为Door A,Door  B,Door C,并且参赛者初始选定了Door A,然后主持人展示了Door  B。那么参赛者是坚持选择Door A还是更换成Door C呢?这就要根据Door A和Door C哪个门后汽车出现的概率较大决定了。

     

    也就是说,我们需要解决P(Door A=car|Door A is selected, Door  B is revealed)P(Door C=car|Door A is selected, Door  B is revealed)哪个大的问题。

     

    首先,每个门后有车的概率都是1/3:

     

    其次,如果Door A门后有汽车,那么Door A被选择的几率是1/3,假设初始选择了Door A,那么Door B被主持人打开的几率是1/2:

     

    再次,普通情况下,Door A被选择的几率是1/3,Door B被主持人打开的几率是1/2(因为已经有一扇门被选择了,选择的门不能被打开):

     

    同理,如果Door C门后有汽车,那么Door A被选择的几率是1/3,假设初始选择了Door A,那么Door B被主持人打开的几率是1:

     

    因此,我们可以看到,P(Door C=car|Door A is selected, Door  B is revealed)是P(Door A=car|Door A is selected, Door  B is revealed)的两倍。也就是说,更换初始的选择将会使我们的获胜几率提高2倍!

     

    可以用probability tree来帮助理解一下:

    如果对上面的计算公式还有疑问,那么让我们用计算机来模拟一下:

    from random import randint
    from random import choice
    
    N = 1000
    
    def simulate(N):
        m=0   #设置不更换初始选择赢得汽车的次数
        n=0   #设置更换初始选择赢得汽车的次数
        for i in range(N):  #模拟1000次游戏
            win=randint(1,3)  #设置藏有汽车的门,在1-3之间随机选出
            bet1=randint(1,3)   #设置初始选择的门,在1-3之间随机选出
            remain=[i for i in range(1,4) if i!=win and i!=bet1]  #剩余可选的门(除去初始选择的门和藏有汽车的门)
            monty_reveal=choice(remain)  #monty会在剩余可选的门中选择一扇门打开
            bet2=6-bet1-monty_reveal  #bet2表示更换初始选择(用6减是因为三扇门加起来等于6)
            if bet1==win:  #如果初始选择和藏有汽车的门吻合,那么初始选择的获胜次数+1
                m+=1
            if bet2==win:  ##如果更换初始选择的bet2和藏有汽车的门吻合,那么bet2的获胜次数+1
                n+=1
        return n/m
     
    print(simulate(N))
    2.0211480362537766

     

    最后的结果: 更换初始选择获胜的次数差不多是不更换初始选择获胜次数的两倍。

     

    三门问题是有些反直觉的,我们可以这样来理解:当参赛者选择Door A时,他的获胜概率是1/3,当主持人展示了Door B门后没有汽车以后,这个信息并没有给参赛者的初始选择带来任何有用的信息 ,选择Door A获胜的概率仍然是1/3,但是鉴于选择Door B获胜的概率降为了0,因此选择Door C获胜的概率变为1-1/3,也就是2/3。

     

    参考:https://classroom.udacity.com/courses/st101/lessons/48744119/concepts/484806120923

     

    哎...今天够累的,签到来了1...
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 立即注册

    本版积分规则

    QQ|手机版|小黑屋|Java自学者论坛 ( 声明:本站文章及资料整理自互联网,用于Java自学者交流学习使用,对资料版权不负任何法律责任,若有侵权请及时联系客服屏蔽删除 )

    GMT+8, 2024-12-22 11:00 , Processed in 0.055880 second(s), 28 queries .

    Powered by Discuz! X3.4

    Copyright © 2001-2021, Tencent Cloud.

    快速回复 返回顶部 返回列表